Sin #2: Little or no normalization
There are times to denormalize a database structure to achieve optimized performance, but sacrificing flexibility is terrible. Despite the long-held belief by developers, one table to store everything is not always optimal. The “one table” approach may make data access easier, but invariably there will be many NULLs for columns that do not apply to a record, and special application code will be needed to handle it. Another common mistake is repeating values stored in a table. This can greatly decrease flexibility and increase difficulty when updating the data.
The sin arises when changes creep into the database due to critical production issues. Inevitably, the model is then left languishing on the side if there is not a process to update the model along with the database. As more changes occur in the database, the model becomes useless.
Undocumented data can also lead to security and compliance risks, poor understanding of future changes and the inability to adapt to future needs of the business. Although the design-then-build practice may be a utopia that is never reached, the changes need to find their way back to the model.
Sin #6: Not using domains and naming standards
Domains and naming standards are probably two of the most important things you can incorporate into your modeling practices. Domains allow you to create reusable attributes so that the same attributes are not created in different places with different properties. It is extremely important to have a common set that everyone can use across all models. Naming standards allow us to clearly identify those attributes consistently.
Having a set of standards also ensures consistency across systems and promotes readability of models and code. You don’t want short, cryptic names that users need to interpret. Given the advanced nature of the latest vendor releases, the days of limited column length name are over when building new databases. Always have a common set of classwords to identify key types of data and use modifiers as needed.
Sin #7: Not choosing primary keys properly
The simplest principle to remember when picking a primary key is SUM: Static, Unique, Minimal. It is not necessary to delve into the whole natural vs. surrogate key debate; however, it is important to know that although surrogate keys may uniquely indentify therecord, they do not always unique identify the data. There is a time and a place for both, and you can always create an alternate key for natural keys if a surrogate is used as the primary key.
Author, Jason Tiret
No comments:
Post a Comment